Riemann Hypothesis Proof

Proof of Riemann Hypothesis We consider H(x, y) = H(z, ¯z) = e−ζ(z)2e−ζ(¯z)2 where ζ is the Riemann zeta function. We calculate the Laplacian of H(x, y) using ∆H(x, y) = 4∂¯∂H (z, ¯z) = 4(−2ζ(z)ζ0(z))e−ζ(z)2(−2ζ(¯z)ζ0(¯z))e−ζ( ¯z)2= 16(ζ(z)ζ(¯z))(ζ0(z)ζ0(¯z))H(x, y)≥0 So if we consider the domain enclosed by the lines a1, a2, a3 where a1={0≤x≤1/2, y = 0}, a2={x= 1/2,0≤y}, a3={x= 0,0≤y} The max of H are on the boundaries ,since…

June 6, 2018
Read More >>